Argonne°

NATIONAL LABORATORY

libEnsemble: A Library for Managing
Dynamic Ensembles of Calculations

David Bindel = Stephen Hudson John-Luke Navarro
Jeffrey Larson Stefan Wild

Argonne National Laboratory

July 14, 2020

@ U5 oEpARTHENT OF

What is 1ibEnsemble

» 1libEnsemble is a library to coordinate the concurrent evaluation of
dynamic ensembles of calculations

S 20f 16

What is 1ibEnsemble

» 1libEnsemble is a library to coordinate the concurrent evaluation of
dynamic ensembles of calculations

» Developed to use massively parallel resources to accelerate the
solution of design, decision, and inference problems

2 of 16

What is 1ibEnsemble

» 1libEnsemble is a library to coordinate the concurrent evaluation of
dynamic ensembles of calculations

» Developed to use massively parallel resources to accelerate the
solution of design, decision, and inference problems

» Developed to expand the class of problems that can benefit from
increased computational concurrency levels

What is 1ibEnsemble

» 1libEnsemble is a library to coordinate the concurrent evaluation of
dynamic ensembles of calculations

» Developed to use massively parallel resources to accelerate the
solution of design, decision, and inference problems

» Developed to expand the class of problems that can benefit from
increased computational concurrency levels

> libEnsemble uses a manager to allocate work to various workers

What is 1ibEnsemble

» 1libEnsemble is a library to coordinate the concurrent evaluation of
dynamic ensembles of calculations

» Developed to use massively parallel resources to accelerate the
solution of design, decision, and inference problems

» Developed to expand the class of problems that can benefit from
increased computational concurrency levels

> libEnsemble uses a manager to allocate work to various workers

» A libEnsemble worker is the smallest indivisible unit to perform

.
libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f

30of 16

N
libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f

sim_f: Evaluates a simulation (i.e., user-defined function) using input
defined by gen_f

° 3 of 16

N
libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f

sim_f: Evaluates a simulation (i.e., user-defined function) using input
defined by gen_f

alloc_f: Decides whether (or not) sim_f or gen_f should be called
(and with what input/resources) as workers become available

a 30of 16

libEnsemble dependencies

» Python 3.5+, NumPy, psutil

4 of 16

libEnsemble dependencies

» Python 3.5+, NumPy, psutil

If using MPI communications in 1ibEnsemble

» An MPI implementation (e.g., MPICH) built with shared/dynamic
libraries

> mpidpy v2.0.0 or above

S 4 0f 16

libEnsemble dependencies

» Python 3.5+, NumPy, psutil

If using MPI communications in 1ibEnsemble

» An MPI implementation (e.g., MPICH) built with shared/dynamic
libraries

> mpidpy v2.0.0 or above

> Can also use multiprocessing or TCP for 1ibEnsemble
communications

a 4 of 16

libEnsemble dependencies

» Python 3.5+, NumPy, psutil

If using MPI communications in 1ibEnsemble

» An MPI implementation (e.g., MPICH) built with shared/dynamic
libraries

» mpidpy v2.0.0 or above

> Can also use multiprocessing or TCP for 1ibEnsemble
communications

» Example gen_f/sim_f functions require NLopt, PETSc, SciPy,
Tasmanian, etc.

libEnsemble overview

libEnsemble Workers
Manager
(o _____ \
") active
| H . -
| Receive J simulation
T _ SUUIEUIEW _
R
,,,,,,, l, . completed
- A\ -
. Update active generation
|
l and queue |
l active
T R T - simulation
' Decide work
' and resources
: - . ‘A simulation ,\ completed
! fve wor j work simulation
\
\ 7

N
Possible user requirements of 1ibEnsemble

» sim_f/gen_f calculations can employ/access parallel resources

» This places requirements on user’s environment and
simulation/generation function

6 6 of 16

N
Possible user requirements of 1ibEnsemble

» sim_f/gen_f calculations can employ/access parallel resources

» This places requirements on user’s environment and
simulation/generation function

» Maintenance of calculation history and performance measures

ﬁ 6 of 16

N
Possible user requirements of 1ibEnsemble

» sim_f/gen_f calculations can employ/access parallel resources

» This places requirements on user’s environment and
simulation/generation function

» Maintenance of calculation history and performance measures

» Termination of unresponsive simulation/generation calculations

a 6 of 16

Possible user requirements of 1ibEnsemble

» sim_f/gen_f calculations can employ/access parallel resources

» This places requirements on user’s environment and
simulation/generation function

» Maintenance of calculation history and performance measures
» Termination of unresponsive simulation/generation calculations

» Termination based on intermediate simulation/generation output

Possible user requirements of 1ibEnsemble

» sim_f/gen_f calculations can employ/access parallel resources

» This places requirements on user’s environment and
simulation/generation function

» Maintenance of calculation history and performance measures
» Termination of unresponsive simulation/generation calculations
» Termination based on intermediate simulation/generation output

> Nonfatal handling (i.e., graceful degradation/fail soft) of failed
simulation/generation calculation

Possible user requirements of 1ibEnsemble

>

vvvyYyy

\4

sim_f/gen_f calculations can employ/access parallel resources

» This places requirements on user’s environment and
simulation/generation function

Maintenance of calculation history and performance measures
Termination of unresponsive simulation/generation calculations
Termination based on intermediate simulation/generation output

Nonfatal handling (i.e., graceful degradation/fail soft) of failed
simulation/generation calculation

Ability to recover hardware resources from
libEnsemble-/generation-/simulation-terminated calculations

Possible user requirements of 1ibEnsemble

>

vvvyYyy

\4

sim_f/gen_f calculations can employ/access parallel resources

» This places requirements on user’s environment and
simulation/generation function

Maintenance of calculation history and performance measures
Termination of unresponsive simulation/generation calculations
Termination based on intermediate simulation/generation output

Nonfatal handling (i.e., graceful degradation/fail soft) of failed
simulation/generation calculation

Ability to recover hardware resources from
libEnsemble-/generation-/simulation-terminated calculations

Simulation/generation checkpoint and restart

Possible user requirements of 1ibEnsemble

>

vvvyYyy

\4

sim_f/gen_f calculations can employ/access parallel resources

» This places requirements on user’s environment and
simulation/generation function

Maintenance of calculation history and performance measures
Termination of unresponsive simulation/generation calculations
Termination based on intermediate simulation/generation output

Nonfatal handling (i.e., graceful degradation/fail soft) of failed
simulation/generation calculation

Ability to recover hardware resources from
1libEnsemble-/generation-/simulation-terminated calculations
Simulation/generation checkpoint and restart

Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,
Theta/ALCF)

Possible user requirements of 1ibEnsemble

>

vvvyYyy

\4

sim_f/gen_f calculations can employ/access parallel resources

» This places requirements on user’s environment and
simulation/generation function

Maintenance of calculation history and performance measures
Termination of unresponsive simulation/generation calculations
Termination based on intermediate simulation/generation output

Nonfatal handling (i.e., graceful degradation/fail soft) of failed
simulation/generation calculation

Ability to recover hardware resources from
1libEnsemble-/generation-/simulation-terminated calculations

Simulation/generation checkpoint and restart

Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,
Theta/ALCF)

Thousands of concurrent workers

OPAL particle accelerator simulations on 1024 Theta
nodes

EEE Completed |
B Killed

80

70

50

40

Count

30

20

10

400 600 800 1000 1200 1400 1600 1800
_ Calculation run time (sec)
a 70f16

.
OPAL particle accelerator simulations on 1024 Theta

nodes

1000 1

800 1

600 1

400

Active calculations

200 1

09:00 09:15 09:30 09:45
Time
° 7 of 16

.\ ___
Why would you want to use 1ibEnsemble?

> Easily take serial code and start running in parallel

a 8 of 16

N
Why would you want to use 1ibEnsemble?

> Easily take serial code and start running in parallel

» Add another level of parallelism to a simulation that no longer scales

° 8 of 16

N
Why would you want to use 1ibEnsemble?

> Easily take serial code and start running in parallel
» Add another level of parallelism to a simulation that no longer scales

» Don’t have to write your own tracking code, 1ibEnsemble will tell
you which runs fail and start other work

& 8 of 16

N
Why would you want to use 1ibEnsemble?

> Easily take serial code and start running in parallel
» Add another level of parallelism to a simulation that no longer scales

» Don’t have to write your own tracking code, 1ibEnsemble will tell
you which runs fail and start other work

» Don’t have to write your own Kkills, just complete 1ibEnsemble
templates

a 8 of 16

Why would you want to use 1ibEnsemble?

> Easily take serial code and start running in parallel
» Add another level of parallelism to a simulation that no longer scales

» Don’t have to write your own tracking code, 1ibEnsemble will tell
you which runs fail and start other work

» Don’t have to write your own Kkills, just complete 1ibEnsemble
templates

> Want to add concurrency to a generator (e.g., multiple local
optimizers.)

Why 1libEnsemble and not...?

Swift: (the parallel scripting language)

» “Can run million programs, thousands at a time, launching
hundreds per second”

» Require writing your generators in Swift’s scripting language

» Difficult to tightly couple generation of inputs and future/active
running simulations

libEnsemble overview

libEnsemble
Manager

Update active
and queue

Allocation
function

Workers

active
simulation

persistent
generation

active

simulation

completed
simulation

libEnsemble overview

p
ibEnsemble Workers
Manager
T T T T T 1 active
} Receive N_’e simulation
\ o __ 4 qu@st
bo)8¢d —/———
7777777 lﬁ - ng persistent
I Update active generation
!) —
} and queue |
l active
777777777 - simulation
{ Allocation “
.____function |
e \‘ completed
| H . 0
- ,le,e,‘fl?tk, B ‘J simulation

libEnsemble overview

libEnsemble
Manager

Update active
and queue

Allocation
function

Workers

active
simulation

persistent
generation

active
simulation

idle worker

libEnsemble overview

libEnsemble

Workers
Manager
(________ \
.) active
| H . -
| Receive ! simulation
\ 1 S
7777777 lﬁ L persistent
- \ -
I Update active generation
| - 0000
} and queue J
l active
777777777 ————— simulation
' Allocation | I
.___ function
co ' | simulation -
| . i_| simulationl | jdle worker
‘ Give work } work
\
\ - - -~ 7

libEnsemble overview

libEnsemble Workers
Manager
(________ \ n
.) active
! Receive ! simulation
\ 1 S
7777777 lﬁ L persistent
I Update active) generation
} and queue J -
7777777 lﬁ””” active
" Allocation | WA 110
. function y
|
oo ! active
L J

libEnsemble overview

libEnsemble
Manager

Update active)
and queue !

Allocation]
function]

| simulation _

output

&

o
%
e

CA
(@
“o

Workers

completed
simulation

persistent
generation

active

simulation

completed
simulation

libEnsemble overview

libEnsemble

Workers
Manager
(\
ST T T T T T T \ X
} Receive } idle worker
e |
)
l persistent
e .
i Update active generation
! -
1 and queve |
l active
””””” T simulation
[Allocation | =T a0 DS
.___ function
T T T T T T T \ .
} Give work } idle worker
\ 1
\ ~ "~~~ "~~~ "~~~)

libEnsemble overview

libE |
II:VIZ:(:;; © Workers
ST T T T T T \ .
| Receive ! idle worker
\ 1
———————
,,,,,,, l, . persistent
I Update active generation
|
} and queue i
777777 I””” active
********* - simulation
{ Allocation | —
1 function]

77777777777777 \ . .
: /| simulation | 5416 \worker
Give work i work

R
libEnsemble modes: centralized or distributed

fmmpute Node (ﬁ 1 Compute Node 1 b
“S&-libEnsemble e

y

" compute Node 2

- . T Tati

I SimuTlation

y

worker 2 Compute Node 3 |
worker 3 Simulation

° - 11 of 16

R
libEnsemble modes: centralized or distributed

f Compute Node 0\ (Compute Node 1 Compute Node 2
A\ |f |
Zég‘libEnsemble s WOTKeEr 2 ‘Worker 3
—— ——
Manager |-
| Generation l J l Simulation l
worker 1 N
Simulation

_g
Aé . 11 of 16

Timing 1ibEnsemble overhead

» Time for 1ibEnsemble to sample/evaluation 30x (workers) points

sy 12 of 16

Timing 1ibEnsemble overhead

» Time for 1ibEnsemble to sample/evaluation 30x (workers) points
» Tons of system-dependent caveats

S 12 of 16

Timing 1ibEnsemble overhead

» Time for 1ibEnsemble to sample/evaluation 30 x (workers) points
» Tons of system-dependent caveats
» 32 nodes x 36 cores = 1152-1 workers

35 Bebop

— Const
30| — 10% Unif = -

25+

20+

Seconds run time

—

—t —— —_

0.0 0.01 0.1 1.0
Seconds wait per calculation

S 12 of 16

Use cases

» A user wants to optimize a function that depends on a simulation
» The simulation is already using parallel resources, but not a large
fraction of some computer

> libEnsemble can coordinate the concurrent evaluation of the
simulation sim_f at various parameter values and gen_f would
return candidate parameter values (possibly after each sim_f output)

Use cases

> A user has a gen_f that produces different meshes to be used within
a sim_f

> Given the sim_f output, gen_£ will refine a mesh or produce a new
mesh

> libEnsemble can ensure that the calculated meshes can be used by
multiple simulations without requiring movement of data

Use cases

» A user wants to evaluate a simulation sim_f at parameters sampled
from a set of parameter values

» Many parameter sets will cause the simulation to fail

» libEnsemble can stop unresponsive evaluations, and recover
computational resources for future evaluations

» gen_f can update the sampling after discovering regions where
evaluations of sim_f fail

Use cases

» A user has a simulation sim_f that requires calculating multiple
expensive quantities, some of which depend on other quantities

» libEnsemble can observe intermediate quantities in order to stop
related calculations and preempt future calculations associated with
a poor parameter values

Use cases

> A user wishes to identify multiple local optima for a sim_f

> libEnsemble can use the points from the APOSMM gen_f to
identify optima

6 13 of 16

Use cases

> A user wishes to identify multiple local optima for a sim_f
> libEnsemble can use the points from the APOSMM gen_f to
identify optima

Naturally, combinations of use cases is supported as well

3 13 of 16

Problem setup
> We want to identify distinct, “high-quality”, local minimizers of
minimize f(x)

I<x<u
x eR”

» High-quality can be measured by more than the objective

S 14 of 16

Problem setup

> We want to identify distinct, “high-quality”, local minimizers of

minimize f(x)
I<x<u
x €R"

» High-quality can be measured by more than the objective

» Derivatives of f may or may not be available

S 14 of 16

Problem setup

> We want to identify distinct, “high-quality”, local minimizers of
minimize f(x)
[<x<u
x € R"
» High-quality can be measured by more than the objective

» Derivatives of f may or may not be available

» The simulation f is likely using parallel resources, but it does not
utilize the entire machine

Problem setup

> We want to identify distinct, “high-quality”, local minimizers of
minimize f(x)
[<x<u
x € R"
» High-quality can be measured by more than the objective

» Derivatives of f may or may not be available

» The simulation f is likely using parallel resources, but it does not
utilize the entire machine

» Possibly have a specialized local optimization method for f

MMMMMM

MMMMMM

MMMMMM

MMMMMM

MMMMMM

MMMMMM

. =
N
.o

w =

w =

MMMMMM

MMMMMM

MMMMMM

MMMMMM

APOSMM

Iteration: 37; r_k: 0.589

15 of 16

APOSMM

Iteration: 38; r_k: 0.574

° 15 of 16

APOSMM

Iteration: 39; r_k: 0.560

° 15 of 16

APOSMM

Iteration: 40; r_k: 0.548

° 15 of 16

APOSMM

Iteration: 41; r_k: 0.536

15 of 1

APOSMM

Iteration: 42; r_k: 0.525

° 15 of 16

APOSMM

Iteration: 43; r_k: 0.515

° 15 of 16

APOSMM

Iteration: 44; r_k: 0.497

L]
°
°
L ‘
L
°
/'\ o

15 of 16

APOSMM

Iteration: 45; r_k: 0.480

° 15 of 16

Closing Remarks

> We have a growing set of use cases and examples

» Let us know if you have examples you'd like to see

> https://github.com/Libensemble/libensemble

6 16 of 16

https://github.com/Libensemble/libensemble

